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4 Abstract

All failure detection methods are based on the use of redundancy, that
is on (possible dynamic) relations among the measured variables. Conse-

quently the robustness of the failure detection process depends to a great
decqree on the reliability of the relundancy relations given the inevitable
presence of model uncertainties. 9-1erhis paperlweaddresseshe problem of
determining redundancy relations whic are optimally robust in a sense
which includes the ma ssues of importance in practical failure detection
and which provides us with a significant amount of intuition concerning the
geometry of robust failure detectioa
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.. 1. Introduction

In this paper we consider the issue of robust failure detection. In

one way or another all failure detection methods generate signals which tend

4 % to hichlight the presence of particular failures if they have actually

occurred. However, if any model uncertainties have effects on the obser-

vables which are at all like those of one or more of the failure modes, these

will also be accentuated. Consequently the problem of robust failure de-

tection is concerned with generating signals which are maximally sensitive

to some effects (failures) .nd minimally sensitive to others (model errors).

The initial impetus for our approach to this problem came from the

work reported in [5, 13] which document the first and to date by far most

successful application and 'light testing of a failure detection algorithm

based on advanced methods which use analytic redundancy. The singular

feature of that project was that the dynamics of the aircraft were decomposed

in order to analyze the relittive reliability of each individual source of

potentially useful failure detection information.

In (2] we presented the results of our initial attempt to extract the

essence of the method used in [5, 13] in order to develop a general approach

to robust failure detection. As discussed in that reference and in others

(such as [3, 7-91), all failure detection systems are based on exploiting

analytical redundancy relat ons or (generalized) parity checks. These are
simply functions of the tem oral histories of the measured quantities which

have the property that they are small (ideally zero) when the system is

operating normally. In [21 we present one criterion for measuring the I-e-

liability of a particular r, dundancy relation and use this to pose an

optimization problem to det rmine the most reliable relation. In [3, 19] we

present another method whic has some computational advantages not found
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in the approach described in [21.

In this paper we describe the major results of [2, 3, 19]. In the

next section we review the notion ol analytic redundancy for perfectly

known models and provide a geometric interpretation which forms the start-

ing point for our investigation of robust failure detection. Section 3

addresses the problem of robustness using our qeometric ideas, and in that

section we pose and solve a first vrsion of the optimum robust redundancy

problem. In Section 4 we discuss extension; to include three important

issues not included in Section 3: scaling, noise, and the detection/robust-

ness tradeoff.

Accession For7
• NTIS G2A&I

DTIC T',.'

4 Uinarinc no']

By. __ __
_Distr"t "t'

AvaiL '1 , Codes

e% %i~i :zc! & /or
Dtst C
I 

Speci l

A60

"e



-4-

2. Redundancy Relations

Consider the noisc-fret discrete-time model

x(k+l) = Ax(k) + Bi(k) (2.1). 4

- y(k) = Cx(k) (2.2)

where x is n-dimensional, u is m-dimensional, y is r-dimensional, and A, B,

and C are perfectly known. A redundancy relation for this model is some

linear combination of preseit and laqqed values of u and y which should be

identically zero if no chances (i.e. failures) occur in (2.1), (2.2). As

1. discussed in [2, 3, 19], re(dundancy relations can be specified mathemati-

cally in the following way. The subspace of (p4-l)r-dimensional vectors

given by

G A4W e C (2.3)

is called the space of parily or redundancy relations of order The reason

for this terminology is the followinq. Suppose that w e G. Then (2.1) -

(2.3) imply that if we part: on ik into (p+l) subvectors of dimension r

W - [W, ... '' ] (2.4)

then at any time k

p i-i1
r(k) = 10 w! [y(k-p+i) - CA Bu(k-p+j)] (0 2.5)-= BIkp~) j 0

The quantity r(k) is called a parity check. A simpler form for (2.')

(which we will use later) c, n be written in the case when u = 0 (or, equiva-

lently, if the effect of th, inputs are subtracted from the observations

before computing the parity check). In this case

*,' " 4.r. . . . - . • .- . " . " * 4. .--.. ' -. °. '.' -.-. . - -*-. - ,' -', '.'\ - -. ' -%-' :." ' -% . -'- 4 * , - .. .
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y(k-p)

r(k) = ' (k-p+l (2.6)

L y k)

To continue our development, let us as ume that.

V. P 310 (2.7)rp
Let us denote the components of (j. as

W! [W ,..W. (2.8)i il ir

Since at least one element of w is nonz -ro, we can normalize w so this
P

1%' component has unity value. Tn order to illi strate several points, let us

assmae that the first component, pl = 1. In this case (2.5) can be re-

written as

p-1  r
1= - y, (k-p+i) - O 2 tU ys(k-p+i)

i=0 1 0 _=2 "is

p i-l
+ 10 jj w0' CA- Bu(R-p+j)] = 0 (2-9)

There are two very important interpretitions of (2.9). The most

obvious is that the right-hand side of this equation represents a synthetic

measurement which can be directly compared to y1 (k) in a simple comparison

test. The second interpretation of (2.9) iE as a reduced-order dynamic

model. Specifically this equation is nothing but an autoregressive-moving

average (ARMA) model for y1 (k). (From the pointof view of the evolution

of yl according to (2.9), y2 "'''y and the components of u are all regarded

as inputs). This second interpretation, allows us to make contact with the

numerous existing failure detection methods. Typically such methods are

based on a noisy version of the model (2.1), (2.2) representing normal

% system behavior together with a set of deviations from this model

I ,.--
a a" , . - . .
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repl:esenting the several failure modes. Rather than applying such methods

to a single, all-encompassino model as in (2.1), (2.2), one could alterna-

tively apply the same technicques to individual models as in (2.9) (or a

combination of several of these), thereby isolating individual (or specific

groups of) parity relations. For example, this is precisely what was done

in [5, 13]. The advantage of such an approach is that it allows one to

separate the information proided by redundancy relations of differing

levels of reliability, somethinq that is not easily done when one starts

with the overall model (2.1), (2.2) which combines all redundancy relations.

In the next two section,; we address the main problem of this paper,

which is the determination o- optimally robust redundancy relations. The

key to this approach is the o)bservation that G in (2.3) is the orthogonal

complement of the range Z of the matrix

(2.10)

Thus (assuming u 0 or that :he effect of u is subtracted from the obser-

vations) a complete set of i idependent parity relations of order p is given

by the orthogonal projection of the window of observations y(k),

y(k-l),...,y(k-p) onto G.

... -'.

°.. ?.%, 6
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3. An Angular Measure of Robustness

Consider a model containing imperf(ectl, known parameters T, process

noise w and measurement noise v:

x(k+l) = A(r)x(k) + B(f)u(k) + w(k. (3.1)

y(k) = C(ll)x(k) + v(k) (3.2)

*where n is a vector of unknown parameters aid where the matrices A, B, C

and the covariances of w and v are func ion; of n. Let K denote the set

of possible values which n can take on. In their work 123 Chow and Willsky

used the following line of reasoning. If tie parameters of the system were

known perfectly and if there were no proces; or measurement noises, then

according to (2.5) we could find a vector w' = [w ., ' and a vector; p
P = -- ... W ] with

p . .
, =i F ! CA -- B (3.3)

so that

r(k) E w'y(k-p+i) - 2. P' u(k-p+l) 0 (3.4)
i=Oi i=O

In the uncertain case, what would seem to mike sense is to minimize some

measure of the size of r(k). For example oie could consider choosing W and

P that solve the minimax problem

2
min max E tr(k)] (3.5)

W ,1 T]eK x (l)

11 W11 u 0

Here the expectation is taken for each valu of n and assuming that the

system is at particular operatinq point, i.e. that u(k) - u and that x (

is the corresponding set point value of the state. This criterion has the

-." .. %%F...'%ON'.. .* '.W. . % *'. . - .. *.'...
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interpretation of finding the approximate parity relation which, at the

specified operating point, produces the residual with the smallest worst-

case mean-square value when no failure has occurred.

Let us make several comments concerning the procedure just described.

In the first place the optimization problem (19) is a complex nonlinear

programming problem. Furthermore, the method does not easily give a sequence

of parity relations ordered by their robustness. Finally the optimum parity

relation clearly depends upon the operating point as specified by u and

x 0(n). In some problems this may be desireable as it does allow one to

adapt the failure detection algorithm to changing conditions, but in others

it might be acceptable or preferable to have a single set of parity rela-

tions for all operating conditions. The approach developed in this paper

produces such a set and results in a far simpler computational procedure.

To begin, let us focus (n (3.1), (3.2) with u = w = v = 0. Referring

to the previous discussion, we note that it is in general impossible to
9.

find parity checks which are perfect for all possible values of nl. That is,

in general we cannot find a subs,,ace G which is orthogonal to

Z(l) = Range ()A(,) (3.6)

N,. for all n.

What would seem to make iense in this case is to choose a subspace G

which is "as orthogonal aa possible" to all possible Z(n). Several rossible

ways in which this can be don, are described in detail in [3]. In tlis

paper we focus on the one approach which leads to the most complete picture

of robust redundancy and which is com' utationally the simplest. To do this,

however, we must make the assumption -hat K, the set of possible values of

4 JL P_ 'b.. vC



n is finite. Typically what this would involve is choosing representative

points out of the actual, continuous ranqe of parameter values. Here "repre-

sentative" means spanning the range of possible values and having density

variations reflecting any desired weiqhtings on the likelihood or importance

"3 of particular sets of parameter values. However this is accomplished, we

will assume for the remainder of thi , paper that ti takes on a discrete set

of values f=l,...,L, and will use th notation A. for A(1l=i), Z. for Z(f=i),

"" etc.

To obtain a simple computational procedure for determining robust re-

-. dundancy relations we first compute an averaqe observation subspace Z which

-is as close as possible to all of the Z., and we then choose G to be the

orthogonal complement of Z . To be more precise, note first that the Z. areo1

subspaces of possibly differing dimensions (dim Z. = ') embedded in a space%' 1 1

of dimension N = (p+l)r. We will find it convenient to use the same symbols

ZIP...,ZL to denote matrices of sizes NxV., i=l,...,L, whose columns form

orthonormal bases for the corresponding subspaces. Letting M = VI+...+vL ,

w' define the NxM matrix

Z =[Z ZL  (3.7)

" Thus the columns of Z span the possible directions in which observation
.4

histories may lie under normal conditions.

We now suppose that we wish to determine the s best parity checks (so

that dim G=s). Thus we wish to determine a subspace Z of dimension N-s.
• O

The optimum choice for this subspace is taken to be the span of the (not

necessarily orthogonal) columns of the matrix Z which minimizes

z
.. Hz - Zoli (3.8)

subject to the constraint that rank Z N-s. Here I IF denotes the

Frobenius norm:

I4"N
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' 1 2 Id 12

ID d (3.9)
C F j 1 ij

There are several impol tant reasons for cioosinct this criterion, ont,
d "

being that it does produce a space which is as close as possible to a

specified set of directions. A second is that the resulting optimization

problem is easy to solve. in particular, let :he singular value decomposi-

tion of Z [14, 15] be given by

Z = U 7 V (3.10)

where U and V are orthogona] matrices, and

Cr 1 0

0 (3.11)7. . 13 .ii

On

Here G < 2 < " " are the singular values of Z ordered by magnitude.

Note we have assumed N < M. If this is not the case we can make it so

without changing the optimu choice of Z by padding Z with additional

columns of zeros. It is readily shown [17, 181 that the matrix Z minimiz-

ing (3.8) is given by

0 0

Zs+l "0 V (3.12)0 N

Moreover, since the columns of U are orthonormal, we immediately see that

the orthogonal complement of the range of Z is given by the first s lefto

singular vectors of Z0, i e. the fir.3t s columns of U. Consequently

G = [u.. :usj (3.13)

and ul,...,u, are the optimum redund.ancy relat-ons.

There is an alternative interpr-tation of this choice of G which

-.., .-. .. . . ... - .. . . ... .. . . . .. .-.. ."?"l"""i"'? " " " " , i ' i< ""-. ' ..,.; ... ;: ... ....... .....: .'' , -:. , ,.%
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provides some very useful insight. pecifically, recll that what we wish to

do is to find a G whose columns are is orthogonal as possbile to the columns

of the Z. ; that is, we would like to choose G to make each of the matrices
1

Z!G as close to zero as possible. Ii fact, as shown in [3], the choice of

G given in (3.13) minimizes

L2
J(s) = Y f'G112  (3.14)

yielding the minimum value

%T S11 2

= 2s (3.15)

There are two important points to observe about the result (3.14),

(3.11). The first is that w, can now see a straiqhtforward way in which to

include unequal weightings on each of the terms in (3.14). Specifically,

if t.ie w. are positive numbers, then
%1

L Lw IIZ'G 1 2  
= II zW GI1 2  (3.16)1= i F =. =i " F

* so that minimizing this quantity is accomplished using the same procedure

- described previously but with Z. relplaced by iwi. Z.. As a second point-1 1 1

note that the optimum value (3.17) provides us with an interpretation of

the singular values as measuresof robustness ind with an ordered sequence

of parity relations from most to le,.st robu;t.

,o
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v, 4. Several Important Extensions

In this section we address several of the drawbacks and limitations of

the result of the precedinq section aind obtain mdific.itions to this result

which overcome ther. at no fundamental increase in complexity.

4.1 Scalingq

A critical problem with the w,:thiod u.,sed in t tic rer':dinu soection is that

all vectors in the observation spaces Z. are treated as being equally likely

to occur. If there are differencas in scale among the system variables this

may lead to poor solutions for the optimum parity relations. To overcome

% this drawback we proceed as f,,lloas. Suppose that we are given a scaling

matrix P so that with the change )f basis

=Px (4.1)

one obtains a variable F. which) is equally likely to lie in any direction.

For example if covdriance ana ysi:i has been performed on x and its covariance

* i"is Q, then P can be chosen to satisfy

-- P 1 (P) - (4. 2)

and the resulting covariance (,f is the identity.

As a next step, recall that vhat we would ideally like to do is to choose

a matrix G so that

C. C. i)

'S C.A. C.. .P A
G1 x= Go (;'C. (4.3)

C.Aip C.App-
,11

is as small as possible. In the preceding section we considered all directions

in Z -Range (C.) to be ( ecual footinq and arrived at the criterion (4.4)IiIl I i i~ilii.1 1, ..
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Since all directions for F, are on equal fot tin;, we are led naturally to the

following criterion which takes scalinq in, a. count

L 2

J(s) Y i'Gil F (4.4)
i. i=l 1 F

Using the result (171 cited in th,' prviols section we see that to

find the Nxs matrix G (with orthonormal column;n) which minimizes J(s) we

must perform a singular value decompositiot of the matrix
.'

C = [C" C2 "'C ] = U X: V (4.5)
-J.%

1 2. L

*) 2 2
where (7- < 0N and U = (u UN....u 1 Then u is the best parity

1 2. . N I

relation with (1i as its measure of robistn'ss, U2 is the next best, etc.,1

and J*(s) is given by (3.15). Finally, in anticipation of the next subsection,

suppose that we use the stochastic intrpr.:tat ion of , i.e. that

E[(U1'] = I (4.6)

In this case if we define the parity check vector

i G'C i (4.7)

then
E[I:"ll JC! J1 (4. V-)

-. 4.2 Observation and Process Noise

In addition to choosing parity relations which are maximally insensitive

. to model uncertainties it is also important t( choose relations which suppress

noise. Consider then the model

x(k+l) = A.x(k) + D.w(k) (4.,')

y(k) - Cix(k) + v(k) (4.10)

where w and v are independent, zero-mean white noise processes with covariances

A . ; . . . *,, . . -. . - , , . . . . .
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* Q and R, respectively.

Let

V = G, (4.10)

y (k+p)]

Then using the interpretation provided in (4.7), we obtain the following

natural generalization uf the :rit,2riori (4.4):

L2
J(S)) E.!W 1 (4.11)

whe re E.i denotes expectation a-;suniing that the ith model is correct. Assuming

that M() = Px(k) has the identity as its covariance, using the whiteness of

w and v, and performing some algebraic manipulations we obtain (31

L 1212
J(S) = JC ICGII + flS Gf (4.12)

i=F F

where S is defined by the fo]]')wir-1:

0 U........0

C.D.

D. = C.A.D CA). . (4.13)

0

N..C.A?. D. C. A p- ). .. C. D.

Q=diaq g .. Q (p times)

.%R = diag (R,...,R) ((p+1) times) (4.14)

L
N = D DQD! + LR SS' (4.15)

From (4.12) we see that the effect of the noise is to specify another.

set of directions, namely the colwnns of S, to which we would like to make

the columns of G as close to orthorronal as possible. From this it is evident



that the optimum choice of G is computed by performing a singular value

decomposition on the matrix

.[C . *sJ = : EV (4.16)

As before (4.16) provides a complete set of parity relations ordered in terms

of their degrees of insensitivity to model errors and noise.

4.3 Detection Versus Robustness

The methods described to this point involve measuring the quality of

redundancy relation:; in terms of how sma.ll the resulting parity checks are

undei normal operat.ng conditions. However, in some cases one might prefer

" A. to use an alternative viewpoint. In particular there may be parity checks

which are not optimally robust in the senses we have discussed but are still

of significant value because they are extremely sensitive to particular

"" failure modes. In this subsection we consider a criterion which takes

such a possibility Lnto account. For simplicity we focus on the noise-free

case. The extension to include noise as in the previous subsection is

. straightforward.
S.

The specific problem we consider is the choice of parity checks for the

robu,.t detection of a particular failure mode. We assume that the unfailed

model of the system is

x (k+l) = A (n)x(k) (4.17);.: u

". y(k) = C (n) x(k) (4.18)

while if the failure has occurred the model is
a..1

x(k+l) = Af(n)x(k) (4.19)
If

y(k) - Cf(fl) x(k) (4.20)

t'o"j In this case one would like to choose G to b, "as orthogonal as possible" to
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Z (n) and "as parallel as possible" to Zf (1).

Assume again that n takes on one of a finite set of possible values, and

let Cu. and C denote the counterparts of C. in (4.3) for the unfailed and
Ul fi l

failed models, respectively. A natural criterion which reflects our objective

is

L L ~ 2 11C~ i l ;  (.1

J(s) = min {IIC GI F G (4.21)

G'G=I i=l F F

If we define the matrix

H =[c :C....C :C :C :...c 1(4.22)
ul u2 uL fl f2 FL

M1 columns M2 columns

J(s) = min tr{G'HSH'G} (4.23)

G'G=I

where

M I M2

-1 0 M

S = . "... (4.24)
L 0 1 1

It is straightforward (see [3]) to show that a minor modification of the-.*

result in (171 leads to the following solution. We perfo'm an eigenvector-

eigenvalue analysis on the matrix

HSH' = U A U' (4.25)

w.ere U'U = I and

A diag (Al,...,N) (4.26)

with <-  < "'" <  andU= [u I  :u1. Then the optimum choice of G
1-2- -N . .N

is

G fuI  U1 (4.27)
s*..° .



and the corresponding value of (4.23) is

s
J*(s) = Y \. (4.28)

Let us make two comments about this solution. The first is that as many

as M of the . can be negative. In fact tie parity check based on u. is2 1

likely to have larger values under failed rather than unfailed conditions

if and only if I. < 0. Thus we immediately see that the maximum number of

useful parity relations for detecting this jarticular failure mode equals

* the number of negatLve eigenvalues of HSH'. As a second comment, let us

contrast the procedure we use here with a singular value decomposition, which

" corresponds essentially to performing an eigenvector-eigenvalue analysis of

HH'. First, assume that the first K of the k. are negative. Then, define
1

2 - I' 2 -_a 2 Aye

1 2 2 ,...

2 2a K0 N (4.29)K+I K+l' "' N

From (4.25) we have that

HSH' UZSEU'

where

E = diag(ol,... ,OCN) (4.31)

,- Assuming that F is nonsingular, define

b-l

V U'H (4.32)

Then (4.31), (4.32) imply that V is S-orthogonal

VSV' = S (4.33)

and that H has what we call as S-singular value decomposition

H - UV (4.34)
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